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ABSTRACT 

In certain situations there is a need for a binary sequence with 

extremely long period (to be measured in years,   say) with equi-distribution 

of zero and ones (and for pairs,   triples,   etc.   insofar as possible) and having 

an additional property which may be called giant-stepping.     We shall describe 

one procedure for handling this problem;  our approach is  based on the 

assumption that it is neither feasible nor desirable to set up way stations 

(whether pre-programmed or not) along the way. 
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An Approach to Giant-Stepping 

In certain situations there is a need for a binary sequence with 

extremely long period (to be measured in years,   say) with equi-distribution 

of zero and ones (and for pairs,   triples,   etc.   insofar as possible) and having 

an additional property which may be called giant-stepping.     By this term we 

have the following in mind.     Suppose that we have two identical machines 

which begin to turn out our sequence in a synchronous fashion at time 

t   —and that at some later time one of them breaks down for an indefinite o 

period.     When this machine is repaired,   one wants to return quickly to 

synchronous production of the  sequence —that is,   a giant-step is  required  in 

order to catch up with the sequence as produced by the functioning machine. 

There are other ways of formulating the giant-stepping requirement,   but 

they are all equivalent.     The important thing is that the catching up process 

should be a matter of a few minutes,   no matter how long the breakdown 

period (days,   weeks,   or even months). 

We shall describe one procedure for handling this problem;  our 

approach is based on the assumption that it is neither feasible nor desirable 

to set up way stations (whether pre-programmed or not) along the way. 

Before giving proofs of the assertions on which our solution depends, 

it is useful to make some remarks about notation and terminology.     If   m 

and   n   are positive integers then   (m, n)   denotes the greatest common 



divisor of  m   and   n;  this is the unique positive integer which divides both 

m   and   n   and is divisible by every other common divisor of  m   and   n.     The 

least common multiple of m  and  n  will be denoted by   [m, n] .     Suppose that 

a   and  n  are positive integers then by the order of  a   mod  n   is meant the 

t s 
smallest integer   t   such that   a    =   1  (mod n);  if   s   is  such that   a     =1   (mod n) 

then  11 s. 

Now consider an infinite binary sequence  A = (a., a_,...» ).     We say 

that   A  has   n ^  1   as a period when 

a. .     = a. i = 1.2*. 
l+n        l 

There is a unique smallest period   of  A —called the period of  A —it is the 

greatest common divisor of all the periods of  A.     If  B = (b   , b?,... )   is 

another infinite binary sequence,   then by   A + B   we mean the binary sequence 

whose   i— term is   a. + b.   for all  i = 1, 2      We shall also need some of 
l        l 

the standard facts about maximal length shift register sequences; proofs of 

them are rather plentiful in the literature —see,   for example,   [3]   or   [4]. 

With these preliminaries out of the way,   let us turn to the facts upon which 

our technique is based. 

Fact 1.      Let  n.,n~   be positive integers; then 

nl n2 
(nj.n^ = 1  « (2      - 1,   2      - 1) = 1 

Proof Suppose that   (n   ,n_) = d >   1,   and write   n    = r.d,    n    = r?d. 

Therefore,    2 
1 _ 1  = (2

d)   2 - 1   and  2   2 - 1  = (2d)   L - 1 



Since for any positive integer   s   we have 

xS - 1  = (x- l)(xS_1  + xS"2  + •••  + x + 1) 

d nl n2 
it follows that   2    — 1   (which is   >   1)   divides both  2       — 1   and   2       — 1—so 

n, n. 
(2   * - 1, 2   2-l)^l. 

Conversely,   suppose that   (n   , n  ) = 1.    If   (2        -1,2'     - 1) = d s    1 
nl       ,    „n2 

then let  p   be a prime (which must be odd) that divides   d.     Thus, 

I      ni I     n2 p|(2      — 1), p I (2      — 1)   and we may write 

"l n2 
2       = (mod p) 2=1   (mod p) 

Let   n  be the order  (see [2])   of 2(mod p)—that is,   n  is the order of  2 in the 

multiplicative group of the field with  p   elements.     Of course,    n >   1.     The 

congruences imply that   n|n     and  n|n   ;   hence,    n | (n   , n   ) =  1,    a contradic- 

tion.     This completes the proof. 

Fact 2.      Let  A    = (a.     ,a?     ,...)   be a sequence of period  m   ,   and let 

A_  = (a.     , a?     ,... )   be a sequence of period  m   ; then   [m   , m   ]   is a 

period of  A    + A Furthermore,   if   (m   , m_) =  1   then the period of 

A    + A     is   [m   ,m_]   = mm 
[m^ m2] 

Proof.       By hypothesis,   we   know that for   kn   =      and all   i,   we have 
  '     }tr 1 m 

(1) _      (1) (1) 
i i+m l+k m 



[m   , m2] 
In the same way,   for  k-, =    and all   i,   we have 

' L ITU 

(2) (2) (2) 
i i+m_ l+k  m 

Since   km    = km     it follows that for all   i 

l l i + (m..,m_] i+|m.,mJ 

which says that   [ m   , m   ]    is a period of  A    + A   . 

Suppose that   [m   , m   ]    is not the period of A    + A   ,   and let   c   denote 

the period—so   c|[m,m],   c/[m,m].     Then there exists a positive 

integer   m   with the properties: 

I rn 1, m2 ] 
cm,    m   [m,,m.l,       = P»    P prime 12 m r 

In particular,    m  is a period of  A    + A?.     If   (m   , m?) =  1   then exactly one 

of  m^m^   divides   m —let it be   m   .     Then,    A     and   A    + A?   both have 

m   as a period; hence so does   A    + (A    + A   ) = A        This contradicts 

m   / m, so that   m   rn_   is the period,   and the proof is complete. 

Fact 3. In one period of a maximal length shift register sequence arising 

from a primitive polynomial of degree   n,    every   k-tuplc      (for each 

n-k 
k =  l,...,n)   occurs equally often — namely,    2       "  times —except for the all 

. .   , _.n-k     ,   .. 
zero    k-tuple   which occurs   2        —1   times. 



Proof.       Let   A = (a . , a?,... )   be the sequence in question.     Since it is a 

linear recursive sequence arising from a primitive polynomial of degree   n, 

its period is  m = 2    — 1 — so  a. ,       =a.   for  i= 1,2,...     .     Now,   fix k.     We l+m l 

must examine the k-tuples 

(aj'aj + l aj+k-l) J =  1--m 

and count the number of times that an arbitrary k-tuple of zeros and ones 

appears.     We recall that,   because  A  is a maximal length shift register 

sequence,   the   n-tuples 

A°) = (aj'aj + l aj+n-l} j = 1,'-'m 

are all distinct and  f (0,..., 0).     In other words,   if  V     denotes the set of all 

n-tuples of zeros and ones,   and  V      denotes   V     with the all zero r n n 

n-tuple excluded,   then 

{A(j) |  j =  l,...,m}   = V L I    J J n 

Thus we are concerned with the k-tuples consisting of the first  k 

coordinates of the elements of  V   .     It follows immediately that any non-zero 

k-tuple occurs   2       k  times,   and that the zero   k-tuple occurs   2 — 1 

times.     This completes the proof. 

Fact 4.        Let   n.   <   n_  <   ...   <   n     be positive integers that are relatively   1 2 r r a ' 

prime in pairs,   and let  A   ,...,A     denote maximal length shift register 



a. 
sequences of periods m.  = 2      — 1,   i =  1,..., r.     Then in one period of the 

r r 

sequence   A =  )   A.   (whose period is    |   m.)   every k-tuple (for each 

1 1 

k =  1,..., n   ) occurs equally often —namely 

IT  m.  +(-D] .r+1 
l 

1 cp =   :       times 
2k 

except for the all zero k-tuple which occurs   <p  + (—1)     times. 

Proof.       The case   r =  1    has already been done.     The proof is by induction 

on r,   but because the notation becomes extremely cumbersome,   we shall 

deal only with the case   r   =   2.     This will suffice to indicate how the proof 

goes in general. 

Fix any  k ^  n   ,    and let D = (d    d. )   denote an  arbitrary 
l IK 

k-tuple f- (0,..., 0).     We must count the number of times   D   appears in one 

period (of length  m   m   ) of  A    + A   .     First of all,   we note that   D   can be 

written in the form  D = B+C   where   B = (b.,..., b. )   and   C = (c ,,..., c. ) Ik Ik 
k 

are both  p (0,..., 0)   in exactly   2    — 2   ways; in fact,   making a choice of  B 
n -k 

determines   C.     Now the k-tuple   B   appears exactly   2 times in a single 

period of  A   —denote them by   B   ,...,B   n   -k;   and the k-tuple   C   appears 
n^-k 

exactly   2   ' times in a single period of  A   —denote them by 

C   ,...,C   n   -k.     Because  m     and  m     are relatively prime each sum 



n   -k n   -k 
B.  + C. i =  1.....2 j =  1.....2 

i J 

appears exactly once in a period of  A    + A Thus,   from a single such 
n   -k        n   -k 

pair   B,   C   we get  D   in a period of  A    + A?   exactly   (2 )  (2 )   times 

so that running over all  such pairs   B,   C   we see that 

ni'k        n2"k        k 
D   appears   (2 )  (2 )  (2    — 2)    times 

We must also count the appearances of  D = B  + C   where   B  = (0,..., 0),C = D. 

vk 
Here,    B   appears   2 — 1   times in a period of  A.,    while   C   appears 

n   -k 
2   ' times in a period of  A?.     It follows that from this pair,     B,   C 

n   -k n   -k 
D   appears   (2 — 1)  (2 )   times 

Finally,   we may write   D = B + C,   C = (0,..., 0),   B = D,    and from this pair 

n   -k        n   -k 
D   appears   (2 )  (2 )   times 

These 3 ways provide all appearances of  D   in a period of 

A    + A   —the number of appearances is then 

n   -k       n   -k       , n   -k n   -k n   -k       n   -k 
(2   1     )(2   L     )(2   -2) + (2 -1)(2 ) + (2   l     ) (2 -1) 

(2ni-l)(2n2-l) + (-D3 mim2 + (-1)3 

= 2^ = 2^ 



which is the desired result. 

It remains to count the appearances of  D = (0,..., 0)   in a period of 

A    + A?.     By the techniques used above,   we see that   (0,..., 0)   appears 

n   -k       n   -k       , n   -k n   -k 
(2   l     )(2   2     )(2   -1) + (2   1      -1)(2   2     -1) 

n.+n_ n n , _2   2 + 2k       m^-l   + 2 

2k IF 

times.     This completes our sketch of the proof. 

From all this it follows that a solution to our problem is given by 

simply adding   mod 2   the outputs of several shift registers associated with 

primitive polynomials.     Let us illustrate this with a concrete example. 

Suppose that the desired sequence is to run at the rate of   10     bits per 

second with period on the order of 100 years.     The number of bits in 100 

years is then approximately 

(106)(60)(60)(24)(365)(100)<   (22°)(26)(26)(25)(29)(27)   =   253 

Consider the primitive polynomials 

17 3 
f   (x) = x       + x    + 1 

f   (x) = x19 + x5 + x2 + x + 1 

21 2 
f   (x) = x   l + x    +  1 



of degrees   n    =  17,   n    =  19,   n    = 21.     Let  A   , A  ,  A     denote the maximum 

length shift register sequences they determine.     Then  A = A    + A    + A 

17 19 21 53 has period   (2      — 1) (2      — 1) (2      — 1) >   2'    —that is,   greater than 100 years. 
11-, 

Suppose that at any time we wish to enter the sequence   A  at the   r— bit, 

17 19 21 
1 <   r <   (2      —1) (2      —1) (2      —1).     Let   r.   i -  1,   2,   3   be the remainder upon 

n. 
division of   r   by   m.  = 2   1-1;   so   0<  r,   <   131, 071   ,   0 <  r.,  <   524, 287 , 1       l 1 2 

0 ^  r_ <   2, 097, 151.     Now,   run the   i       shift register,   starting from its 

initial  setting,   until it reaches the   r.—  bit.     This takes on the order of 
° l 

2 seconds! ! !     Upon reaching the   r.— bit the shift register stops until all 

three are ready to proceed simultaneously from the required place.     In 

particular,   giant-stepping is quite feasible.     Of course,   the zeros and ones 

of our  sequence are nicely distributed,   and so are blocks of terms of length 

upto and including  17.     It should also be noted that,   in view of our example, 

the clock or timing device which serves to keep count of the bits should be 
n. 

set up in terms of several cyclic devices of periods   m.  = 2     — 1— in other 

words,   counting is to be done modulo the various   m.,    rather than in the 

scale of   10. 
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